数学

四次元を「見る」方法 〜射影について〜 その2

投稿日:

前回、投影と呼ばれる、3次元の物体を2次元に描き表すための方法を紹介した。

この投影とはいったいどういう操作なのか、数学を用いて解説してみようと思う。


まず、キャビネット図を例にとって考えてみよう。

3次元空間内の点が2次元平面上のどこに対応するのかが分かれば、投影できることになる。

そこで、3次元の座標(x,y,z)を2次元の座標(a,b)で表すとき、どのようなルールで対応しているのかが分かれば良い。

ここでは、横をx方向、奥行きをy方向、縦をz方向とする。

まず、基準となる点が必要なので、原点は原点に移されるとして良いだろう。

つまりこういうことである。

  • (0, 0, 0) \rightarrow (0, 0)

キャビネット図では、横方向と縦方向はそのままの縮尺で表す。

したがって、原点から横に1だけ進んだ点(1,0,0)は2次元平面上でもそのまま(1,0)で表される。

また、縦に1だけ進んだ点(0,0,1)もそのまま(0,1)で表される。

  • (1, 0, 0) \rightarrow (1, 0)
  • (0, 0, 1) \rightarrow (0, 1)

奥行きに関してはどうだろうか。

奥行きは、斜め45度に半分の長さで描くのだった。

その結果、奥に1だけ進んだ点(0,1,0)は、(1/2\sqrt{2}, 1/2\sqrt{2})に移される。

三平方の定理を使えば、\sqrt{(1/2\sqrt{2})^2+(1/2\sqrt{2})^2}=1/2となることから半分の長さになっていることが確かめられる。

  • (0, 1, 0) \rightarrow (1/2\sqrt{2}, 1/2\sqrt{2})

-数学
-,

執筆者:


comment

メールアドレスが公開されることはありません。 が付いている欄は必須項目です

関連記事

菱形十二面体 その12

これまでの記事 今回は、Mathematicaで領域をプロットする機能を使って菱形十二面体に関係する話をしよう。 Mathematicaには、不等号で表される領域をプロットするための関数が用意されてい …

菱形十二面体 その5

菱形十二面体菱形十二面体 その2菱形十二面体 その3菱形十二面体 その4 今回も菱形十二面体の話をしよう。 その3で、菱形十二面体は立方体とピラミッド6個にカットできることを書いた。 このピラミッド6 …

no image

三次方程式・四次方程式の解の公式を書き下してみる

皆さんは、わけのわからない数式を見たときにワクワクしたりしませんか。僕はします。 ただ、僕の基準としては全く意味のない数式だとダメで、長くて重要な数式じゃないといけないんですね。 せっかくブログで数式 …

菱形十二面体 その2

前回に引き続き、菱形十二面体の話をしよう。 前回、頂点座標が(±1, ±1, ±1), (±2, 0, 0), (0, ±2, 0), (0, 0, ±2)で表されることを述べた。 ご覧のように、菱形 …

菱形十二面体 その11

これまでの記事 今回は、立方体から菱形十二面体を切り出す方法を紹介しよう。 そのためには、立方体の各面からダイヤ型に切り出すことが必要になる。 以下でその様子を見ていく。 まず、立方体の面のうちの1つ …