数学

四次元を「見る」方法 〜射影について〜 その2

投稿日:

前回、投影と呼ばれる、3次元の物体を2次元に描き表すための方法を紹介した。

この投影とはいったいどういう操作なのか、数学を用いて解説してみようと思う。


まず、キャビネット図を例にとって考えてみよう。

3次元空間内の点が2次元平面上のどこに対応するのかが分かれば、投影できることになる。

そこで、3次元の座標(x,y,z)を2次元の座標(a,b)で表すとき、どのようなルールで対応しているのかが分かれば良い。

ここでは、横をx方向、奥行きをy方向、縦をz方向とする。

まず、基準となる点が必要なので、原点は原点に移されるとして良いだろう。

つまりこういうことである。

  • (0, 0, 0) \rightarrow (0, 0)

キャビネット図では、横方向と縦方向はそのままの縮尺で表す。

したがって、原点から横に1だけ進んだ点(1,0,0)は2次元平面上でもそのまま(1,0)で表される。

また、縦に1だけ進んだ点(0,0,1)もそのまま(0,1)で表される。

  • (1, 0, 0) \rightarrow (1, 0)
  • (0, 0, 1) \rightarrow (0, 1)

奥行きに関してはどうだろうか。

奥行きは、斜め45度に半分の長さで描くのだった。

その結果、奥に1だけ進んだ点(0,1,0)は、(1/2\sqrt{2}, 1/2\sqrt{2})に移される。

三平方の定理を使えば、\sqrt{(1/2\sqrt{2})^2+(1/2\sqrt{2})^2}=1/2となることから半分の長さになっていることが確かめられる。

  • (0, 1, 0) \rightarrow (1/2\sqrt{2}, 1/2\sqrt{2})

-数学
-,

執筆者:


comment

メールアドレスが公開されることはありません。 が付いている欄は必須項目です

関連記事

四次元を「見る」方法 〜射影について〜

今までに菱形十二面体の記事をたくさん書いてきたが、菱形十二面体についてどうしても書きたいことがある。 それは、「菱形十二面体は4次元立方体の射影である」という事実である。 しかし、これについて書くため …

半正多面体はいくつあるか?その2

前回、半正多面体の条件について考えた。 無限に存在する角柱と反角柱を半正多面体の対象から除くため、次のような条件にするのが良いのではないかというところまで書いた。 半正多面体の条件(改) すべての面が …

菱形十二面体 その2

前回に引き続き、菱形十二面体の話をしよう。 前回、頂点座標が(±1, ±1, ±1), (±2, 0, 0), (0, ±2, 0), (0, 0, ±2)で表されることを述べた。 ご覧のように、菱形 …

準正多面体?半正多面体?どちらが正しい?

正多面体の1種類の正多角形で出来ているという制限を緩くすることで、アルキメデスの立体と呼ばれる13種類の多面体が得られる。 これらは、「半正多面体」と呼ばれることもあるのだが、一昔前の本や文献を見ると …

菱形十二面体 その3

前々回、前回に引き続き、今回も菱形十二面体の話をしよう。 前回、菱形十二面体の内部には立方体が隠れていると書いた。 今回は、立方体以外の部分に注目したい。 下の図のように、立方体以外の部分は、6個のピ …