数学

四次元を「見る」方法 〜射影について〜

投稿日:2020年8月13日 更新日:

今までに菱形十二面体の記事をたくさん書いてきたが、菱形十二面体についてどうしても書きたいことがある。

それは、「菱形十二面体は4次元立方体の射影である」という事実である。

しかし、これについて書くためには、その前に射影とは何か?という話をしなければいけない。

射影とは、一言で言うと影のことである。

例えば、私たちの身体は3次元の物体だが、地面に映る影は2次元になっており、これは一種の射影である。

実は、射影を使うことで、普通は想像することも難しい4次元の世界を「見る」ことが出来るようになる。

この記事シリーズでは、

  • 射影とは何か
  • 射影の数学的な説明
  • 射影を4次元に適用するとどんなことが分かるようになるのか

といったことを解説していきたいと思う。

まず、3次元のものを2次元に移す射影である、投影について解説しよう。

投影

3次元空間の物体を2次元平面上に書き写すことを投影と呼ぶ。

等角図やキャビネット図といった単語を聞いたことはないだろうか。

これらは投影の方法の例である。

投影では、縦、横、奥行きの3つの直行する軸を平面上でどのように表すかによってその種類が変わる。


等角図は、3つの直行する軸の間の角度をそれぞれ120度ずつとする投影法である。

等角図で描く長さは実際の物体と同じ長さを用いる。

等角図で描かれた立方体

キャビネット図は、縦と横の間の角度を90度としてそのまま描き、奥行きを斜め45度として実際の半分の長さで描く。

キャビネット図で描かれた立方体

今回はここまで!

-数学
-,

執筆者:


comment

メールアドレスが公開されることはありません。 が付いている欄は必須項目です

関連記事

菱形十二面体

今回から、多面体に関する記事を書いていく。 最初ということで、まずは僕の一番好きな多面体から紹介したい。 菱形十二面体である。 その名の通り、菱形が12枚集まることで構成されている。 頂点の座標表示の …

正多面体が5つしかない理由・オイラーの多面体定理を用いた証明

前回、1つの頂点に集まる面の種類と数を考えることで、正多面体が5種類しかないということを証明した。 今回は、別の方法で同じことを証明しようと思う。 そのために、次の定理を用いる。 オイラーの多面体定理 …

no image

四次元を「見る」方法 〜射影について〜 その2

前回、投影と呼ばれる、3次元の物体を2次元に描き表すための方法を紹介した。 この投影とはいったいどういう操作なのか、数学を用いて解説してみようと思う。 まず、キャビネット図を例にとって考えてみよう。 …

no image

四次元を「見る」方法 〜射影について〜 その3

菱形十二面体 その6

これまでの記事↓菱形十二面体菱形十二面体 その2菱形十二面体 その3菱形十二面体 その4菱形十二面体 その5 今回も菱形十二面体の話をしよう。 今回は、菱形十二面体の各菱形の辺から中心に向かって切って …