数学

菱形十二面体 その3

投稿日:

前々回前回に引き続き、今回も菱形十二面体の話をしよう。

前回、菱形十二面体の内部には立方体が隠れていると書いた。

今回は、立方体以外の部分に注目したい。

下の図のように、立方体以外の部分は、6個のピラミッドに分かれている。

これら6個のピラミッドを集めてみよう。

すると、再び立方体が現れる。

この立方体は、最初に菱形十二面体の内部に隠れていた立方体と全く同じ大きさである。

したがって、菱形十二面体をカットしてできた6個のピラミッドを集めると、同じ大きさの立方体2個を作ることができる。

-数学
-,

執筆者:


comment

メールアドレスが公開されることはありません。 が付いている欄は必須項目です

関連記事

準正多面体?半正多面体?どちらが正しい?

正多面体の1種類の正多角形で出来ているという制限を緩くすることで、アルキメデスの立体と呼ばれる13種類の多面体が得られる。 これらは、「半正多面体」と呼ばれることもあるのだが、一昔前の本や文献を見ると …

菱形十二面体 その14

これまでの記事 アユイ構成(Häuy Construction)という多面体の構成法がある。 この考案者のルネ=ジュスト・アユイは、18世紀のフランスの鉱物学者で、「鉱物学の父」と呼ばれている。 アユ …

菱形十二面体 その12

これまでの記事 今回は、Mathematicaで領域をプロットする機能を使って菱形十二面体に関係する話をしよう。 Mathematicaには、不等号で表される領域をプロットするための関数が用意されてい …

no image

三次方程式・四次方程式の解の公式を書き下してみる

皆さんは、わけのわからない数式を見たときにワクワクしたりしませんか。僕はします。 ただ、僕の基準としては全く意味のない数式だとダメで、長くて重要な数式じゃないといけないんですね。 せっかくブログで数式 …

no image

四次元を「見る」方法 〜射影について〜 その3