comment

メールアドレスが公開されることはありません。 が付いている欄は必須項目です

関連記事

no image

四次元を「見る」方法 〜射影について〜 その3

準正多面体?半正多面体?どちらが正しい?

正多面体の1種類の正多角形で出来ているという制限を緩くすることで、アルキメデスの立体と呼ばれる13種類の多面体が得られる。 これらは、「半正多面体」と呼ばれることもあるのだが、一昔前の本や文献を見ると …

四次元を「見る」方法 〜射影について〜

今までに菱形十二面体の記事をたくさん書いてきたが、菱形十二面体についてどうしても書きたいことがある。 それは、「菱形十二面体は4次元立方体の射影である」という事実である。 しかし、これについて書くため …

菱形十二面体 その2

前回に引き続き、菱形十二面体の話をしよう。 前回、頂点座標が(±1, ±1, ±1), (±2, 0, 0), (0, ±2, 0), (0, 0, ±2)で表されることを述べた。 ご覧のように、菱形 …

切稜四面体

菱形十二面体その12では立方体の辺をカットしたものを考えた。 このとき出てきた次の多面体は、切稜立方体と呼ばれる。 また、その13では正八面体の辺をカットして、切稜八面体が現れた。 そして、いずれも場 …