数学

正多面体が5つしかない理由

投稿日:2020年8月22日 更新日:

今回は正多面体の話をしよう。

正多面体とは、

すべての面が正多角形で、1つの頂点に集まる面の数が同じ凸多面体

のことである。

正多面体は、正四面体、正六面体(立方体)、正八面体、正十二面体、正二十面体の5つしか存在しない。

なぜこの5つしかないか。

この疑問に答えるには、1点に集まる面の数と種類に着目すればこの5種類しかないことを証明できる。

まず、正方形から作られる正多面体について考えよう。

正方形を使う場合、1つの頂点に集まる正方形の数は3枚でなければいけない。

2枚だと立体にならないし、4枚だと360度になってしまい、折りたたむ前に平面になってしまうからである。

1つの頂点に正方形が3枚ずつ集まるようにしながら正方形を集めていくと、立方体が組み上がる。


正五角形を使う場合も、やはり1つの頂点に集まるのは3枚でなければいけない。

4枚以上では組み上げる前から360度を超えてしまうからである。

このとき、正十二面体が出来る。


最後に、正三角形によって出来る正多面体には何があるか考えよう。

正三角形の場合、1つの頂点に3から5枚集めることが出来る。

6枚以上だとやはり360度以上になってしまう。

それぞれ、正四面体、正八面体、正二十面体が出来上がる。


最後に、正六角形以上は使えないか考えよう。

正六角形を3枚集めると360度になってしまい、立体にすることができない。

正七角形以上では360度を超えてしまい、やはり不可能である。


以上より、正多面体は5つしかないことが証明された。

2次元だと正多角形は無限にあるのに、3次元になると急に5つだけになってしまうのである。

今回はここまで!

-数学
-,

執筆者:


comment

メールアドレスが公開されることはありません。 が付いている欄は必須項目です

関連記事

no image

四次元を「見る」方法 〜射影について〜 その2

前回、投影と呼ばれる、3次元の物体を2次元に描き表すための方法を紹介した。 この投影とはいったいどういう操作なのか、数学を用いて解説してみようと思う。 まず、キャビネット図を例にとって考えてみよう。 …

菱形十二面体 その6

これまでの記事↓菱形十二面体菱形十二面体 その2菱形十二面体 その3菱形十二面体 その4菱形十二面体 その5 今回も菱形十二面体の話をしよう。 今回は、菱形十二面体の各菱形の辺から中心に向かって切って …

菱形十二面体

今回から、多面体に関する記事を書いていく。 最初ということで、まずは僕の一番好きな多面体から紹介したい。 菱形十二面体である。 その名の通り、菱形が12枚集まることで構成されている。 頂点の座標表示の …

半正多面体はいくつあるか?その2

前回、半正多面体の条件について考えた。 無限に存在する角柱と反角柱を半正多面体の対象から除くため、次のような条件にするのが良いのではないかというところまで書いた。 半正多面体の条件(改) すべての面が …

四次元を「見る」方法 〜射影について〜

今までに菱形十二面体の記事をたくさん書いてきたが、菱形十二面体についてどうしても書きたいことがある。 それは、「菱形十二面体は4次元立方体の射影である」という事実である。 しかし、これについて書くため …