数学

切稜四面体

投稿日:2020年8月18日 更新日:

菱形十二面体その12では立方体の辺をカットしたものを考えた。

このとき出てきた次の多面体は、切稜立方体と呼ばれる。

また、その13では正八面体の辺をカットして、切稜八面体が現れた。

そして、いずれも場合でも、カットする量を増やしていくと、菱形十二面体が現れた。


さて、今回は正四面体の辺をカットしたときにどうなるか見てみよう。

まず、正四面体を準備するには、x + y + z ≦ 1 , -x – y + z ≦ 1 , x – y – z ≦ 1, -x + y – z ≦ 1を全て満たす領域を取ればよい。

そこから、カットする深さを決める定数をaとして、|x| ≦ a, |y| ≦ a, |z| ≦ aを条件に加えれば、正四面体の辺をカットすることができる。

Mathematicaでの関数は次のようになった。

RegionPlot3D[x + y + z <= 1 && -x - y + z <= 1 && x - y - z <= 1 && -x + y - z <=1 && Abs[x] <= a && Abs[y] <= a && Abs[z] <= a, {x, -1, 1}, {y, -1, 1}, {z, -1,1}, Mesh -> None, PlotPoints -> 100]


a=1のときはまだどこもカットされておらず、正四面体のままである。

そこからaを小さくしていくと、徐々に辺がカットされていく。

a=0.5ではかなり六角形が目立つようになってきている。

上の2つや下の多面体など、正四面体の辺をカットすることで出来た多面体を、切稜四面体と呼ぶ。

そして、a=0.35ではほとんど立方体になってしまった。

その後は立方体の形を保ったまま小さくなって消える。

正四面体の辺をカットすることで別の正多面体である立方体が中から現れてくるのは興味深い。

これで、正多面体5つのうち、正四面体、立方体、正八面体の切稜を行った。

残り2つ、正十二面体と正二十面体が残されているが、これは別の機会にやってみることにしよう。


今回の話もgifアニメにしたのでぜひ見てもらいたい。

今回はここまで!

-数学
-,

執筆者:


comment

メールアドレスが公開されることはありません。 が付いている欄は必須項目です

関連記事

菱形十二面体 その14

これまでの記事 アユイ構成(Häuy Construction)という多面体の構成法がある。 この考案者のルネ=ジュスト・アユイは、18世紀のフランスの鉱物学者で、「鉱物学の父」と呼ばれている。 アユ …

四次元を「見る」方法 〜射影について〜

今までに菱形十二面体の記事をたくさん書いてきたが、菱形十二面体についてどうしても書きたいことがある。 それは、「菱形十二面体は4次元立方体の射影である」という事実である。 しかし、これについて書くため …

半正多面体はいくつあるか?

今回は、正多面体の制限を少し緩くした、半正多面体についての話をするのだが、その前に正多面体のおさらいをしよう。 正多面体の条件 すべての面が同じ正多角形1つの頂点に集まる面の数が同じ という2つの条件 …

no image

三次方程式・四次方程式の解の公式を書き下してみる

皆さんは、わけのわからない数式を見たときにワクワクしたりしませんか。僕はします。 ただ、僕の基準としては全く意味のない数式だとダメで、長くて重要な数式じゃないといけないんですね。 せっかくブログで数式 …

菱形十二面体 その11

これまでの記事 今回は、立方体から菱形十二面体を切り出す方法を紹介しよう。 そのためには、立方体の各面からダイヤ型に切り出すことが必要になる。 以下でその様子を見ていく。 まず、立方体の面のうちの1つ …