数学

切稜四面体

投稿日:2020年8月18日 更新日:

菱形十二面体その12では立方体の辺をカットしたものを考えた。

このとき出てきた次の多面体は、切稜立方体と呼ばれる。

また、その13では正八面体の辺をカットして、切稜八面体が現れた。

そして、いずれも場合でも、カットする量を増やしていくと、菱形十二面体が現れた。


さて、今回は正四面体の辺をカットしたときにどうなるか見てみよう。

まず、正四面体を準備するには、x + y + z ≦ 1 , -x – y + z ≦ 1 , x – y – z ≦ 1, -x + y – z ≦ 1を全て満たす領域を取ればよい。

そこから、カットする深さを決める定数をaとして、|x| ≦ a, |y| ≦ a, |z| ≦ aを条件に加えれば、正四面体の辺をカットすることができる。

Mathematicaでの関数は次のようになった。

RegionPlot3D[x + y + z <= 1 && -x - y + z <= 1 && x - y - z <= 1 && -x + y - z <=1 && Abs[x] <= a && Abs[y] <= a && Abs[z] <= a, {x, -1, 1}, {y, -1, 1}, {z, -1,1}, Mesh -> None, PlotPoints -> 100]


a=1のときはまだどこもカットされておらず、正四面体のままである。

そこからaを小さくしていくと、徐々に辺がカットされていく。

a=0.5ではかなり六角形が目立つようになってきている。

上の2つや下の多面体など、正四面体の辺をカットすることで出来た多面体を、切稜四面体と呼ぶ。

そして、a=0.35ではほとんど立方体になってしまった。

その後は立方体の形を保ったまま小さくなって消える。

正四面体の辺をカットすることで別の正多面体である立方体が中から現れてくるのは興味深い。

これで、正多面体5つのうち、正四面体、立方体、正八面体の切稜を行った。

残り2つ、正十二面体と正二十面体が残されているが、これは別の機会にやってみることにしよう。


今回の話もgifアニメにしたのでぜひ見てもらいたい。

今回はここまで!

-数学
-,

執筆者:


comment

メールアドレスが公開されることはありません。 が付いている欄は必須項目です

関連記事

菱形十二面体 その13

これまでの記事 前回、立方体の辺をカットしていくことを考えた。 今回は、同じことを正八面体に対してやってみよう。 前回のMathematicaの式を少しいじるだけでそれが可能になる。 RegionPl …

菱形十二面体 その6

これまでの記事↓菱形十二面体菱形十二面体 その2菱形十二面体 その3菱形十二面体 その4菱形十二面体 その5 今回も菱形十二面体の話をしよう。 今回は、菱形十二面体の各菱形の辺から中心に向かって切って …

菱形十二面体 その14

これまでの記事 アユイ構成(Häuy Construction)という多面体の構成法がある。 この考案者のルネ=ジュスト・アユイは、18世紀のフランスの鉱物学者で、「鉱物学の父」と呼ばれている。 アユ …

菱形十二面体 その9

これまでの記事 前回、菱形十二面体による空間充填が可能なことについて書いた。 今回はこれをもう少し掘り下げてみる。 そのために、菱形十二面体について話をする前に、いったん平面充填についての話をしよう。 …

正多面体が5つしかない理由・オイラーの多面体定理を用いた証明

前回、1つの頂点に集まる面の種類と数を考えることで、正多面体が5種類しかないということを証明した。 今回は、別の方法で同じことを証明しようと思う。 そのために、次の定理を用いる。 オイラーの多面体定理 …