数学

菱形十二面体 その11

投稿日:

これまでの記事


今回は、立方体から菱形十二面体を切り出す方法を紹介しよう。

そのためには、立方体の各面からダイヤ型に切り出すことが必要になる。

以下でその様子を見ていく。

まず、立方体の面のうちの1つを上にして置き、そこからダイヤ型に切り出して、周りの部分は捨てる。

すると、下のように、少し細長い直方体が残る。

この直方体を上のように90度回して倒す。

そこに対して先ほどと同じようにダイヤ型に切り出す。

すると、下のように少し平べったい8面体が残る。

それをまた90度回して倒し、残った方向に対してダイヤ型に切り出す。

最終的に、菱形十二面体が残る。

以上、立方体から菱形十二面体を切り出す方法を紹介した。

今回はここまで!

-数学
-,

執筆者:


comment

メールアドレスが公開されることはありません。 が付いている欄は必須項目です

関連記事

菱形十二面体 その13

これまでの記事 前回、立方体の辺をカットしていくことを考えた。 今回は、同じことを正八面体に対してやってみよう。 前回のMathematicaの式を少しいじるだけでそれが可能になる。 RegionPl …

正多面体が5つしかない理由・オイラーの多面体定理を用いた証明

前回、1つの頂点に集まる面の種類と数を考えることで、正多面体が5種類しかないということを証明した。 今回は、別の方法で同じことを証明しようと思う。 そのために、次の定理を用いる。 オイラーの多面体定理 …

no image

三次方程式・四次方程式の解の公式を書き下してみる

皆さんは、わけのわからない数式を見たときにワクワクしたりしませんか。僕はします。 ただ、僕の基準としては全く意味のない数式だとダメで、長くて重要な数式じゃないといけないんですね。 せっかくブログで数式 …

菱形十二面体 その6

これまでの記事↓菱形十二面体菱形十二面体 その2菱形十二面体 その3菱形十二面体 その4菱形十二面体 その5 今回も菱形十二面体の話をしよう。 今回は、菱形十二面体の各菱形の辺から中心に向かって切って …

切稜四面体

菱形十二面体その12では立方体の辺をカットしたものを考えた。 このとき出てきた次の多面体は、切稜立方体と呼ばれる。 また、その13では正八面体の辺をカットして、切稜八面体が現れた。 そして、いずれも場 …