数学

菱形十二面体

投稿日:2020年7月31日 更新日:

今回から、多面体に関する記事を書いていく。

最初ということで、まずは僕の一番好きな多面体から紹介したい。

菱形十二面体である。

その名の通り、菱形が12枚集まることで構成されている。

頂点の座標表示の一例を挙げると、(±1, ±1, ±1), (±2, 0, 0), (0, ±2, 0), (0, 0, ±2)の計14点である。

ただし、±は取りうる全ての組み合わせを取るものとする。

例えば、(±1, ±1, ±1)は±が3個あるので、合計8頂点を表している。


この座標表示から、菱形の形状を知ることができる。

菱形のうち一枚だけに着目しよう。

例えば、(2, 0, 0), (1, 1 ,1), (0, 2, 0), (1, 1, -1)の4点からなる菱形がある。

この対角線の長さを計算すると、(1, 1 ,1)と(1, 1, -1)の間の距離は2で、(2, 0, 0)と(0, 2, 0)の間の距離は2\sqrt{2}である。

つまり、対角線の長さの比が1 : \sqrt{2}となっている。

この1 : \sqrt{2}という比率は、白銀比と呼ばれており、コピー用紙の縦横の比など、身近にもよく現れる、美しいとされている比率である。

そのため、この菱形のことを白銀菱形と呼ぶ。

菱形十二面体には、数々の面白い性質があるので、次回以降そちらも紹介していきたいと思う。

-数学
-,

執筆者:


comment

メールアドレスが公開されることはありません。 が付いている欄は必須項目です

関連記事

菱形十二面体 その12

これまでの記事 今回は、Mathematicaで領域をプロットする機能を使って菱形十二面体に関係する話をしよう。 Mathematicaには、不等号で表される領域をプロットするための関数が用意されてい …

菱形十二面体 その3

前々回、前回に引き続き、今回も菱形十二面体の話をしよう。 前回、菱形十二面体の内部には立方体が隠れていると書いた。 今回は、立方体以外の部分に注目したい。 下の図のように、立方体以外の部分は、6個のピ …

菱形十二面体 その10

これまでの記事 今回は、菱形十二面体の対称性に注目してみよう。 この菱形十二面体を、対称性の高い方向から見てみるとどうなるだろうか。 まず、菱形十二面体には、菱形の鋭角が4枚集まっている頂点と、菱形の …

菱形十二面体 その13

これまでの記事 前回、立方体の辺をカットしていくことを考えた。 今回は、同じことを正八面体に対してやってみよう。 前回のMathematicaの式を少しいじるだけでそれが可能になる。 RegionPl …

正多面体が5つしかない理由・オイラーの多面体定理を用いた証明

前回、1つの頂点に集まる面の種類と数を考えることで、正多面体が5種類しかないということを証明した。 今回は、別の方法で同じことを証明しようと思う。 そのために、次の定理を用いる。 オイラーの多面体定理 …