数学

菱形十二面体 その13

投稿日:

これまでの記事


前回、立方体の辺をカットしていくことを考えた。

今回は、同じことを正八面体に対してやってみよう。

前回のMathematicaの式を少しいじるだけでそれが可能になる。

RegionPlot3D[Abs[x + y + z] <= 1 && Abs[-x + y + z] <= 1 && Abs[x - y + z] <= 1 &&Abs[x + y - z] <= 1&&Abs[x + y] <= a && Abs[x - y] <= a && Abs[y + z] <= a && Abs[y - z] <= a && Abs[x + z] <= a && Abs[x - z] <= a, {x, -1, 1}, {y, -1, 1}, {z, -1, 1}, Mesh -> None, PlotPoints -> 100]

前回の関数との違いは、大かっこの中の最初の4つの式である。

x+y+z, -x+y+z, x-y+z, x+y-zの絶対値が1以下という条件を加えることで、正八面体を用意した。

今回は、a=1から始めて小さくしていく。

aが1を切ると、辺がカットされ始める。

ここで現れた多面体は、切稜八面体と呼ばれる。

正三角形が8枚と細長い六角形が12枚あり、18面体となっている。

ここでの「稜」とは、角や隅のことを指す漢字で、数学的には平面と平面が交わるところを指す。

多面体で平面と平面が交わるところと言えば辺のことなので、切稜というのはそのままの意味で辺をカットすることを指している。

実は、古今東西さまざまな多面体を見たり作ったりしてきた筆者だが、この切稜八面体はあまり知らなかった。

いずれ模型を作って手にとってみたいと思っている。


さて、a=0.7のときにはほとんど三角形の部分はなくなり、菱形十二面体が現れる。

さらにaを小さくしていくと、あとは立方体のときと同じように菱形十二面体の形を保ったまま小さくなっていく。


今回の内容もgifアニメにしたのでぜひ見てもらいたい。

-数学
-, ,

執筆者:


comment

メールアドレスが公開されることはありません。 が付いている欄は必須項目です

関連記事

菱形十二面体 その11

これまでの記事 今回は、立方体から菱形十二面体を切り出す方法を紹介しよう。 そのためには、立方体の各面からダイヤ型に切り出すことが必要になる。 以下でその様子を見ていく。 まず、立方体の面のうちの1つ …

菱形十二面体 その9

これまでの記事 前回、菱形十二面体による空間充填が可能なことについて書いた。 今回はこれをもう少し掘り下げてみる。 そのために、菱形十二面体について話をする前に、いったん平面充填についての話をしよう。 …

no image

四次元を「見る」方法 〜射影について〜 その2

前回、投影と呼ばれる、3次元の物体を2次元に描き表すための方法を紹介した。 この投影とはいったいどういう操作なのか、数学を用いて解説してみようと思う。 まず、キャビネット図を例にとって考えてみよう。 …

菱形十二面体 その2

前回に引き続き、菱形十二面体の話をしよう。 前回、頂点座標が(±1, ±1, ±1), (±2, 0, 0), (0, ±2, 0), (0, 0, ±2)で表されることを述べた。 ご覧のように、菱形 …

菱形十二面体 その4

菱形十二面体菱形十二面体 その2菱形十二面体 その3 今回も菱形十二面体の話をしよう。 前回は、菱形十二面体の内部に立方体が隠れており、その残りの部分のピラミッドを6個集めると同じ大きさの立方体が組み …