数学

菱形十二面体 その9

投稿日:2020年8月9日 更新日:

これまでの記事


前回、菱形十二面体による空間充填が可能なことについて書いた。

今回はこれをもう少し掘り下げてみる。

そのために、菱形十二面体について話をする前に、いったん平面充填についての話をしよう。

空間充填が多面体で3次元を埋め尽くすものだったのに対し、平面充填は多角形で2次元を埋め尽くす。

例えばパッチワークは平面充填の一例である。


一番単純な平面充填は、正方形によるものである。

ここに、次のように市松模様になるように数ある正方形のうちの半分にその正方形の対角線を書き込む。

すると、見方を変えると、下図のような斜め向きの赤い正方形が無数に出来ており、赤い正方形による平面充填になっている。

この赤い正方形は元の黒い正方形の2倍の面積を持つ。


さて、この操作を立方体の空間充填に対して行うとどうなるだろうか。

立方体の空間充填に対して、市松模様状になるように、立方体のうち半分を6つのピラミッドに切り分ける。

すると、このように菱形十二面体の空間充填が浮かび上がってくる。

間に少し空間を開けてみて、一部分だけ描写したものがこちらである。

正方形のときはこの操作を行って出来るのは面積が2倍の正方形だったが、立方体のときには大きい立方体が出来るのではなく、菱形十二面体が出来た。

そして、それはそのまま菱形十二面体の空間充填を表している。

-数学
-,

執筆者:


comment

メールアドレスが公開されることはありません。 が付いている欄は必須項目です

関連記事

no image

三次方程式・四次方程式の解の公式を書き下してみる

皆さんは、わけのわからない数式を見たときにワクワクしたりしませんか。僕はします。 ただ、僕の基準としては全く意味のない数式だとダメで、長くて重要な数式じゃないといけないんですね。 せっかくブログで数式 …

四次元を「見る」方法 〜射影について〜

今までに菱形十二面体の記事をたくさん書いてきたが、菱形十二面体についてどうしても書きたいことがある。 それは、「菱形十二面体は4次元立方体の射影である」という事実である。 しかし、これについて書くため …

菱形十二面体 その6

これまでの記事↓菱形十二面体菱形十二面体 その2菱形十二面体 その3菱形十二面体 その4菱形十二面体 その5 今回も菱形十二面体の話をしよう。 今回は、菱形十二面体の各菱形の辺から中心に向かって切って …

no image

半正多面体はいくつあるか? その3

前々回、前回と、半正多面体の定義について説明した。 今回は、具体的にはどんな半正多面体があるのか紹介する。 半正多面体は、13種類存在し、いくつかのグループに分類することができる。 順番に見ていこう。

菱形十二面体 その4

菱形十二面体菱形十二面体 その2菱形十二面体 その3 今回も菱形十二面体の話をしよう。 前回は、菱形十二面体の内部に立方体が隠れており、その残りの部分のピラミッドを6個集めると同じ大きさの立方体が組み …