数学

菱形十二面体 その9

投稿日:2020年8月9日 更新日:

これまでの記事


前回、菱形十二面体による空間充填が可能なことについて書いた。

今回はこれをもう少し掘り下げてみる。

そのために、菱形十二面体について話をする前に、いったん平面充填についての話をしよう。

空間充填が多面体で3次元を埋め尽くすものだったのに対し、平面充填は多角形で2次元を埋め尽くす。

例えばパッチワークは平面充填の一例である。


一番単純な平面充填は、正方形によるものである。

ここに、次のように市松模様になるように数ある正方形のうちの半分にその正方形の対角線を書き込む。

すると、見方を変えると、下図のような斜め向きの赤い正方形が無数に出来ており、赤い正方形による平面充填になっている。

この赤い正方形は元の黒い正方形の2倍の面積を持つ。


さて、この操作を立方体の空間充填に対して行うとどうなるだろうか。

立方体の空間充填に対して、市松模様状になるように、立方体のうち半分を6つのピラミッドに切り分ける。

すると、このように菱形十二面体の空間充填が浮かび上がってくる。

間に少し空間を開けてみて、一部分だけ描写したものがこちらである。

正方形のときはこの操作を行って出来るのは面積が2倍の正方形だったが、立方体のときには大きい立方体が出来るのではなく、菱形十二面体が出来た。

そして、それはそのまま菱形十二面体の空間充填を表している。

-数学
-,

執筆者:


comment

メールアドレスが公開されることはありません。 が付いている欄は必須項目です

関連記事

準正多面体?半正多面体?どちらが正しい?

正多面体の1種類の正多角形で出来ているという制限を緩くすることで、アルキメデスの立体と呼ばれる13種類の多面体が得られる。 これらは、「半正多面体」と呼ばれることもあるのだが、一昔前の本や文献を見ると …

菱形十二面体 その7

これまでの記事↓菱形十二面体菱形十二面体 その2菱形十二面体 その3菱形十二面体 その4菱形十二面体 その5菱形十二面体 その6 今回も菱形十二面体の話をしよう。 前回、菱形十二面体を各菱形の辺から中 …

半正多面体はいくつあるか?

今回は、正多面体の制限を少し緩くした、半正多面体についての話をするのだが、その前に正多面体のおさらいをしよう。 正多面体の条件 すべての面が同じ正多角形1つの頂点に集まる面の数が同じ という2つの条件 …

菱形十二面体 その12

これまでの記事 今回は、Mathematicaで領域をプロットする機能を使って菱形十二面体に関係する話をしよう。 Mathematicaには、不等号で表される領域をプロットするための関数が用意されてい …

半正多面体はいくつあるか?その2

前回、半正多面体の条件について考えた。 無限に存在する角柱と反角柱を半正多面体の対象から除くため、次のような条件にするのが良いのではないかというところまで書いた。 半正多面体の条件(改) すべての面が …