数学

正多面体が5つしかない理由・オイラーの多面体定理を用いた証明

投稿日:2020年8月23日 更新日:

前回、1つの頂点に集まる面の種類と数を考えることで、正多面体が5種類しかないということを証明した。

今回は、別の方法で同じことを証明しようと思う。

そのために、次の定理を用いる。

オイラーの多面体定理

穴の開いていない多面体について、次の等式が成り立つ。
(頂点の数) − (辺の数) + (面の数) = 2

今回は証明は省略するが、どんな複雑な多面体についても上の式を計算すれば必ず2になるというのだからなかなか強力な定理である。

どんなにややこしい多面体でも、穴が空いてさえいなければ必ず
(頂点の数) − (辺の数) + (面の数) = 2
になる

さて、正多面体の証明に移っていこう。


すべての面が正N角形となっている正多面体を考える。

1角形や2角形は存在しないので、当然Nは3以上である。

さらに、1つの頂点に集まる面の数をMとする。

前回も書いたように、Mは3以上でなければいけない(でないと立体にならないので)。

最後に、全部の面の数をFとする。

さて、このときに頂点の数・辺の数がN,M,Fを用いてどう表されるか見ていこう。


各面に頂点はN個ずつあるので、頂点はN×F個になる、と言いたいところだが、これは多すぎである。

なぜなら、1つの頂点にM個ずつ面が集まっているからである。

立方体を例にとって考えてみよう。

立方体は、6面あり、1つの面に4つ角があるので、頂点が6×4=24あるように思えるが、1つの頂点に3枚ずつ集まっているので、1つの頂点を3度数えてしまっている。

なので、6×4÷3=8が実際の頂点の数である。

同じように考えて、一般に頂点の数はN×FをMで割って、

\frac{NF}{M}

で表される。

次に、辺の数を考えよう。

こちらも先ほどと同じように考えると、辺は各面にN個あり、N×Fになりそうだが、一つの辺には2つの面がくっついている。

したがって、一般に辺の数はN×Fを2で割って、

\frac{NF}{2}

で表される。


さて、証明の準備が整った。

今までに求めた頂点の数、辺の数、面の数をオイラーの多面体定理に代入すると、

\frac{NF}{M} - \frac{NF}{2} + F = 2

となり、これを変形すると、

F = \frac{4M}{(2N+2M-NM)}

となる。

さて、面の数Fは自然数なので、分母の(2N+2M-NM) は正の数でなければいけない。つまり、

2N+2M-NM > 0

これを変形して、

(N-2)(M-2) < 4

が得られる。N≧3、M≧3かつ上の不等式を満たす(N,M)の組は、

(N,M)=(3,3), (3,4), (3,5), (4,3), (5,3)

の5通りしかない。

これらの解がそれぞれ、正四面体、正八面体、正二十面体、正六面体(立方体)、正十二面体に対応している。

というわけで、オイラーの多面体定理を用いて正多面体が5種類しかないことを証明した。

今回はここまで!

-数学
-,

執筆者:


comment

メールアドレスが公開されることはありません。 が付いている欄は必須項目です

関連記事

半正多面体はいくつあるか?

今回は、正多面体の制限を少し緩くした、半正多面体についての話をするのだが、その前に正多面体のおさらいをしよう。 正多面体の条件 すべての面が同じ正多角形1つの頂点に集まる面の数が同じ という2つの条件 …

菱形十二面体 その12

これまでの記事 今回は、Mathematicaで領域をプロットする機能を使って菱形十二面体に関係する話をしよう。 Mathematicaには、不等号で表される領域をプロットするための関数が用意されてい …

no image

菱形十二面体 その15

これまでの記事 前回、アユイ構成という、立方体を使って多面体を近似するやり方を紹介した。

菱形十二面体 その5

菱形十二面体菱形十二面体 その2菱形十二面体 その3菱形十二面体 その4 今回も菱形十二面体の話をしよう。 その3で、菱形十二面体は立方体とピラミッド6個にカットできることを書いた。 このピラミッド6 …

四次元を「見る」方法 〜射影について〜

今までに菱形十二面体の記事をたくさん書いてきたが、菱形十二面体についてどうしても書きたいことがある。 それは、「菱形十二面体は4次元立方体の射影である」という事実である。 しかし、これについて書くため …