数学

菱形十二面体 その10

投稿日:

これまでの記事


今回は、菱形十二面体の対称性に注目してみよう。

この菱形十二面体を、対称性の高い方向から見てみるとどうなるだろうか。

まず、菱形十二面体には、菱形の鋭角が4枚集まっている頂点と、菱形の鈍角が3枚集まっている頂点がある。

鋭角が4枚集まっている頂点の方向からまっすぐ見てみよう。

すると、菱形が4枚見えるはずだが、菱形を斜めから見ることになる影響で、菱形と言っても正方形型になる。

全体としても正方形の形をしている。

次に、鈍角が3枚集まっている頂点の方向からまっすぐ見てみる。

すると、菱形が3枚見えるのは予想通りだが、全体としては正六角形になる。

後ろが透けて見える場合は、正三角形が6枚集まった形になる。

最後に、菱形が正面に見える方向から見てみよう。

すると、このように正面の菱形の周りにある菱形が4枚、平べったくなりつつ見えていることが分かる。

以上の内容をgifアニメにしたのでぜひ見てもらいたい。

-数学
-,

執筆者:


comment

メールアドレスが公開されることはありません。 が付いている欄は必須項目です

関連記事

菱形十二面体 その3

前々回、前回に引き続き、今回も菱形十二面体の話をしよう。 前回、菱形十二面体の内部には立方体が隠れていると書いた。 今回は、立方体以外の部分に注目したい。 下の図のように、立方体以外の部分は、6個のピ …

正多面体が5つしかない理由

今回は正多面体の話をしよう。 正多面体とは、 すべての面が正多角形で、1つの頂点に集まる面の数が同じ凸多面体 のことである。 正多面体は、正四面体、正六面体(立方体)、正八面体、正十二面体、正二十面体 …

no image

半正多面体はいくつあるか? その3

前々回、前回と、半正多面体の定義について説明した。 今回は、具体的にはどんな半正多面体があるのか紹介する。 半正多面体は、13種類存在し、いくつかのグループに分類することができる。 順番に見ていこう。

菱形多面体たち

私は今までの多面体の記事を書くにあたってMathematicaというソフトを利用しているのだが、Mathematicaの機能にはかなり便利なものもあって、その一つを使ってみたので紹介する。 実は、有名 …

no image

四次元を「見る」方法 〜射影について〜 その3