数学

菱形十二面体 その11

投稿日:

これまでの記事


今回は、立方体から菱形十二面体を切り出す方法を紹介しよう。

そのためには、立方体の各面からダイヤ型に切り出すことが必要になる。

以下でその様子を見ていく。

まず、立方体の面のうちの1つを上にして置き、そこからダイヤ型に切り出して、周りの部分は捨てる。

すると、下のように、少し細長い直方体が残る。

この直方体を上のように90度回して倒す。

そこに対して先ほどと同じようにダイヤ型に切り出す。

すると、下のように少し平べったい8面体が残る。

それをまた90度回して倒し、残った方向に対してダイヤ型に切り出す。

最終的に、菱形十二面体が残る。

以上、立方体から菱形十二面体を切り出す方法を紹介した。

今回はここまで!

-数学
-,

執筆者:


comment

メールアドレスが公開されることはありません。 が付いている欄は必須項目です

関連記事

正多面体が5つしかない理由

今回は正多面体の話をしよう。 正多面体とは、 すべての面が正多角形で、1つの頂点に集まる面の数が同じ凸多面体 のことである。 正多面体は、正四面体、正六面体(立方体)、正八面体、正十二面体、正二十面体 …

四次元を「見る」方法 〜射影について〜

今までに菱形十二面体の記事をたくさん書いてきたが、菱形十二面体についてどうしても書きたいことがある。 それは、「菱形十二面体は4次元立方体の射影である」という事実である。 しかし、これについて書くため …

菱形十二面体 その10

これまでの記事 今回は、菱形十二面体の対称性に注目してみよう。 この菱形十二面体を、対称性の高い方向から見てみるとどうなるだろうか。 まず、菱形十二面体には、菱形の鋭角が4枚集まっている頂点と、菱形の …

菱形十二面体 その12

これまでの記事 今回は、Mathematicaで領域をプロットする機能を使って菱形十二面体に関係する話をしよう。 Mathematicaには、不等号で表される領域をプロットするための関数が用意されてい …

菱形十二面体 その13

これまでの記事 前回、立方体の辺をカットしていくことを考えた。 今回は、同じことを正八面体に対してやってみよう。 前回のMathematicaの式を少しいじるだけでそれが可能になる。 RegionPl …