数学

菱形十二面体 その11

投稿日:

これまでの記事


今回は、立方体から菱形十二面体を切り出す方法を紹介しよう。

そのためには、立方体の各面からダイヤ型に切り出すことが必要になる。

以下でその様子を見ていく。

まず、立方体の面のうちの1つを上にして置き、そこからダイヤ型に切り出して、周りの部分は捨てる。

すると、下のように、少し細長い直方体が残る。

この直方体を上のように90度回して倒す。

そこに対して先ほどと同じようにダイヤ型に切り出す。

すると、下のように少し平べったい8面体が残る。

それをまた90度回して倒し、残った方向に対してダイヤ型に切り出す。

最終的に、菱形十二面体が残る。

以上、立方体から菱形十二面体を切り出す方法を紹介した。

今回はここまで!

-数学
-,

執筆者:


comment

メールアドレスが公開されることはありません。 が付いている欄は必須項目です

関連記事

正多面体が5つしかない理由・オイラーの多面体定理を用いた証明

前回、1つの頂点に集まる面の種類と数を考えることで、正多面体が5種類しかないということを証明した。 今回は、別の方法で同じことを証明しようと思う。 そのために、次の定理を用いる。 オイラーの多面体定理 …

no image

三次方程式・四次方程式の解の公式を書き下してみる

皆さんは、わけのわからない数式を見たときにワクワクしたりしませんか。僕はします。 ただ、僕の基準としては全く意味のない数式だとダメで、長くて重要な数式じゃないといけないんですね。 せっかくブログで数式 …

四次元を「見る」方法 〜射影について〜

今までに菱形十二面体の記事をたくさん書いてきたが、菱形十二面体についてどうしても書きたいことがある。 それは、「菱形十二面体は4次元立方体の射影である」という事実である。 しかし、これについて書くため …

半正多面体はいくつあるか?

今回は、正多面体の制限を少し緩くした、半正多面体についての話をするのだが、その前に正多面体のおさらいをしよう。 正多面体の条件 すべての面が同じ正多角形1つの頂点に集まる面の数が同じ という2つの条件 …

no image

四次元を「見る」方法 〜射影について〜 その2

前回、投影と呼ばれる、3次元の物体を2次元に描き表すための方法を紹介した。 この投影とはいったいどういう操作なのか、数学を用いて解説してみようと思う。 まず、キャビネット図を例にとって考えてみよう。 …