Loading [MathJax]/jax/input/TeX/config.js

数学

菱形十二面体 その2

投稿日:2020年8月1日 更新日:

前回に引き続き、菱形十二面体の話をしよう。

前回、頂点座標が(±1, ±1, ±1), (±2, 0, 0), (0, ±2, 0), (0, 0, ±2)で表されることを述べた。

ご覧のように、菱形十二面体には、菱形の鋭角が4つ集まっている頂点と、菱形の鈍角が3つ集まっている頂点の2種類がある。

このうち、菱形が3つ集まっている頂点だけを結ぶと、なんと内部に立方体が現れる。

頂点座標で言うと、(±1, ±1, ±1)の8点である。

今度は、菱形が4つ集まっている頂点だけを結ぶと、内部に正八面体が現れる。

こちらは頂点座標で言うと、(±2, 0, 0), (0, ±2, 0), (0, 0, ±2)の計6点である。

この菱形十二面体の内部に現れた立方体と正八面体は、お互いに貫きあっていて、辺同士がそれぞれの中点で交わっている。

この立方体と正八面体が貫きあっている図は、複合多面体と呼ばれるものの一種である。

このように綺麗な図が描けるのは、立方体と正八面体が双対の関係にあるからである。

双対については多くの例を挙げていずれ詳しく書くつもりだが、一言で言うと面の中心を頂点に対応させ、逆に頂点を面に対応させる変換のことである。

このように、正八面体の各面の中心を結ぶと立方体になり、立方体の各面の中心を結ぶと正八面体になる。

最後に、立方体、正八面体、菱形十二面体を同時に書き込んだ図を載せて終わりにしよう。

-数学
-,

執筆者:


comment

メールアドレスが公開されることはありません。 が付いている欄は必須項目です

関連記事

菱形十二面体 その14

これまでの記事 アユイ構成(Häuy Construction)という多面体の構成法がある。 この考案者のルネ=ジュスト・アユイは、18世紀のフランスの鉱物学者で、「鉱物学の父」と呼ばれている。 アユ …

no image

三次方程式・四次方程式の解の公式を書き下してみる

皆さんは、わけのわからない数式を見たときにワクワクしたりしませんか。僕はします。 ただ、僕の基準としては全く意味のない数式だとダメで、長くて重要な数式じゃないといけないんですね。 せっかくブログで数式 …

菱形十二面体 その10

これまでの記事 今回は、菱形十二面体の対称性に注目してみよう。 この菱形十二面体を、対称性の高い方向から見てみるとどうなるだろうか。 まず、菱形十二面体には、菱形の鋭角が4枚集まっている頂点と、菱形の …

菱形十二面体 その5

菱形十二面体菱形十二面体 その2菱形十二面体 その3菱形十二面体 その4 今回も菱形十二面体の話をしよう。 その3で、菱形十二面体は立方体とピラミッド6個にカットできることを書いた。 このピラミッド6 …

半正多面体はいくつあるか?

今回は、正多面体の制限を少し緩くした、半正多面体についての話をするのだが、その前に正多面体のおさらいをしよう。 正多面体の条件 すべての面が同じ正多角形1つの頂点に集まる面の数が同じ という2つの条件 …

S