数学

菱形多面体たち

投稿日:2020年8月12日 更新日:

私は今までの多面体の記事を書くにあたってMathematicaというソフトを利用しているのだが、Mathematicaの機能にはかなり便利なものもあって、その一つを使ってみたので紹介する。

実は、有名な多面体のデータは最初から含まれており、それを呼び出すだけで画像を生成できる。

例えば、PolyhedronData["RhombicDodecahedron"]と書くだけで、次の画像が得られる。

菱形十二面体

これは菱形十二面体だが、RhombicDodecahedronの部分をRhombicTriacontahedronとすれば、菱形三十面体が得られる。

この多面体はまだ紹介していないが、いずれ記事でも詳しく説明したいと思う。

菱形三十面体

他にも、RhombicIcosahedronとすれば、菱形三十面体の一部の面を取り除くことによって得られる、菱形二十面体の画像が作れる。

菱形二十面体

また、次の多面体は星型をしており、菱形六十面体と呼ばれている。

これはRhombicHexecontahedronとすれば良い。

菱形六十面体

最後に、菱形九十面体である。

描くにはRhombicEnneacontahedronとする。

これは今までとは違い、2種類の菱形からできている。

菱形九十面体

以上、いろいろな菱形多面体たちを紹介してきた。

今回はここまで!

-数学
-

執筆者:


comment

メールアドレスが公開されることはありません。 が付いている欄は必須項目です

関連記事

no image

四次元を「見る」方法 〜射影について〜 その2

前回、投影と呼ばれる、3次元の物体を2次元に描き表すための方法を紹介した。 この投影とはいったいどういう操作なのか、数学を用いて解説してみようと思う。 まず、キャビネット図を例にとって考えてみよう。 …

菱形十二面体 その7

これまでの記事↓菱形十二面体菱形十二面体 その2菱形十二面体 その3菱形十二面体 その4菱形十二面体 その5菱形十二面体 その6 今回も菱形十二面体の話をしよう。 前回、菱形十二面体を各菱形の辺から中 …

半正多面体はいくつあるか?その2

前回、半正多面体の条件について考えた。 無限に存在する角柱と反角柱を半正多面体の対象から除くため、次のような条件にするのが良いのではないかというところまで書いた。 半正多面体の条件(改) すべての面が …

no image

四次元を「見る」方法 〜射影について〜 その3

菱形十二面体 その8

これまでの記事↓菱形十二面体菱形十二面体 その2菱形十二面体 その3菱形十二面体 その4菱形十二面体 その5菱形十二面体 その6菱形十二面体 その7 今回は、菱形十二面体の空間充填について話をしよう。 …