数学

菱形多面体たち

投稿日:2020年8月12日 更新日:

私は今までの多面体の記事を書くにあたってMathematicaというソフトを利用しているのだが、Mathematicaの機能にはかなり便利なものもあって、その一つを使ってみたので紹介する。

実は、有名な多面体のデータは最初から含まれており、それを呼び出すだけで画像を生成できる。

例えば、PolyhedronData["RhombicDodecahedron"]と書くだけで、次の画像が得られる。

菱形十二面体

これは菱形十二面体だが、RhombicDodecahedronの部分をRhombicTriacontahedronとすれば、菱形三十面体が得られる。

この多面体はまだ紹介していないが、いずれ記事でも詳しく説明したいと思う。

菱形三十面体

他にも、RhombicIcosahedronとすれば、菱形三十面体の一部の面を取り除くことによって得られる、菱形二十面体の画像が作れる。

菱形二十面体

また、次の多面体は星型をしており、菱形六十面体と呼ばれている。

これはRhombicHexecontahedronとすれば良い。

菱形六十面体

最後に、菱形九十面体である。

描くにはRhombicEnneacontahedronとする。

これは今までとは違い、2種類の菱形からできている。

菱形九十面体

以上、いろいろな菱形多面体たちを紹介してきた。

今回はここまで!

-数学
-

執筆者:


comment

メールアドレスが公開されることはありません。 が付いている欄は必須項目です

関連記事

菱形十二面体

今回から、多面体に関する記事を書いていく。 最初ということで、まずは僕の一番好きな多面体から紹介したい。 菱形十二面体である。 その名の通り、菱形が12枚集まることで構成されている。 頂点の座標表示の …

no image

四次元を「見る」方法 〜射影について〜 その3

菱形十二面体 その3

前々回、前回に引き続き、今回も菱形十二面体の話をしよう。 前回、菱形十二面体の内部には立方体が隠れていると書いた。 今回は、立方体以外の部分に注目したい。 下の図のように、立方体以外の部分は、6個のピ …

半正多面体はいくつあるか?

今回は、正多面体の制限を少し緩くした、半正多面体についての話をするのだが、その前に正多面体のおさらいをしよう。 正多面体の条件 すべての面が同じ正多角形1つの頂点に集まる面の数が同じ という2つの条件 …

菱形十二面体 その14

これまでの記事 アユイ構成(Häuy Construction)という多面体の構成法がある。 この考案者のルネ=ジュスト・アユイは、18世紀のフランスの鉱物学者で、「鉱物学の父」と呼ばれている。 アユ …