数学

菱形十二面体 その10

投稿日:

これまでの記事


今回は、菱形十二面体の対称性に注目してみよう。

この菱形十二面体を、対称性の高い方向から見てみるとどうなるだろうか。

まず、菱形十二面体には、菱形の鋭角が4枚集まっている頂点と、菱形の鈍角が3枚集まっている頂点がある。

鋭角が4枚集まっている頂点の方向からまっすぐ見てみよう。

すると、菱形が4枚見えるはずだが、菱形を斜めから見ることになる影響で、菱形と言っても正方形型になる。

全体としても正方形の形をしている。

次に、鈍角が3枚集まっている頂点の方向からまっすぐ見てみる。

すると、菱形が3枚見えるのは予想通りだが、全体としては正六角形になる。

後ろが透けて見える場合は、正三角形が6枚集まった形になる。

最後に、菱形が正面に見える方向から見てみよう。

すると、このように正面の菱形の周りにある菱形が4枚、平べったくなりつつ見えていることが分かる。

以上の内容をgifアニメにしたのでぜひ見てもらいたい。

-数学
-,

執筆者:


comment

メールアドレスが公開されることはありません。 が付いている欄は必須項目です

関連記事

no image

半正多面体はいくつあるか? その3

前々回、前回と、半正多面体の定義について説明した。 今回は、具体的にはどんな半正多面体があるのか紹介する。 半正多面体は、13種類存在し、いくつかのグループに分類することができる。 順番に見ていこう。

正多面体が5つしかない理由

今回は正多面体の話をしよう。 正多面体とは、 すべての面が正多角形で、1つの頂点に集まる面の数が同じ凸多面体 のことである。 正多面体は、正四面体、正六面体(立方体)、正八面体、正十二面体、正二十面体 …

半正多面体はいくつあるか?その2

前回、半正多面体の条件について考えた。 無限に存在する角柱と反角柱を半正多面体の対象から除くため、次のような条件にするのが良いのではないかというところまで書いた。 半正多面体の条件(改) すべての面が …

no image

四次元を「見る」方法 〜射影について〜 その2

前回、投影と呼ばれる、3次元の物体を2次元に描き表すための方法を紹介した。 この投影とはいったいどういう操作なのか、数学を用いて解説してみようと思う。 まず、キャビネット図を例にとって考えてみよう。 …

菱形十二面体 その12

これまでの記事 今回は、Mathematicaで領域をプロットする機能を使って菱形十二面体に関係する話をしよう。 Mathematicaには、不等号で表される領域をプロットするための関数が用意されてい …