数学

菱形十二面体 その4

投稿日:

菱形十二面体
菱形十二面体 その2
菱形十二面体 その3

今回も菱形十二面体の話をしよう。

前回は、菱形十二面体の内部に立方体が隠れており、その残りの部分のピラミッドを6個集めると同じ大きさの立方体が組み上がることについて書いた。

今回は、内部の八面体以外の部分について同じようなことが可能かどうか見ていこう。

まず、菱形十二面体の中には正八面体も隠れているのだった。

正八面体以外の部分は、平べったい三角錐になっている。

これらの三角錐のうち、4個だけ取り出して集めてみよう。

すると、今回は正四面体が現れる。

先ほど菱形十二面体をカットしたときに、平べったい三角錐は8個あったことを思い出すと、菱形十二面体1個から正八面体が1個と正四面体が2個作れることが分かる。

-数学
-,

執筆者:


comment

メールアドレスが公開されることはありません。 が付いている欄は必須項目です

関連記事

菱形十二面体 その10

これまでの記事 今回は、菱形十二面体の対称性に注目してみよう。 この菱形十二面体を、対称性の高い方向から見てみるとどうなるだろうか。 まず、菱形十二面体には、菱形の鋭角が4枚集まっている頂点と、菱形の …

菱形十二面体 その7

これまでの記事↓菱形十二面体菱形十二面体 その2菱形十二面体 その3菱形十二面体 その4菱形十二面体 その5菱形十二面体 その6 今回も菱形十二面体の話をしよう。 前回、菱形十二面体を各菱形の辺から中 …

菱形十二面体 その13

これまでの記事 前回、立方体の辺をカットしていくことを考えた。 今回は、同じことを正八面体に対してやってみよう。 前回のMathematicaの式を少しいじるだけでそれが可能になる。 RegionPl …

菱形十二面体 その3

前々回、前回に引き続き、今回も菱形十二面体の話をしよう。 前回、菱形十二面体の内部には立方体が隠れていると書いた。 今回は、立方体以外の部分に注目したい。 下の図のように、立方体以外の部分は、6個のピ …

準正多面体?半正多面体?どちらが正しい?

正多面体の1種類の正多角形で出来ているという制限を緩くすることで、アルキメデスの立体と呼ばれる13種類の多面体が得られる。 これらは、「半正多面体」と呼ばれることもあるのだが、一昔前の本や文献を見ると …