数学

菱形十二面体 その4

投稿日:

菱形十二面体
菱形十二面体 その2
菱形十二面体 その3

今回も菱形十二面体の話をしよう。

前回は、菱形十二面体の内部に立方体が隠れており、その残りの部分のピラミッドを6個集めると同じ大きさの立方体が組み上がることについて書いた。

今回は、内部の八面体以外の部分について同じようなことが可能かどうか見ていこう。

まず、菱形十二面体の中には正八面体も隠れているのだった。

正八面体以外の部分は、平べったい三角錐になっている。

これらの三角錐のうち、4個だけ取り出して集めてみよう。

すると、今回は正四面体が現れる。

先ほど菱形十二面体をカットしたときに、平べったい三角錐は8個あったことを思い出すと、菱形十二面体1個から正八面体が1個と正四面体が2個作れることが分かる。

-数学
-,

執筆者:


comment

メールアドレスが公開されることはありません。 が付いている欄は必須項目です

関連記事

菱形十二面体 その14

これまでの記事 アユイ構成(Häuy Construction)という多面体の構成法がある。 この考案者のルネ=ジュスト・アユイは、18世紀のフランスの鉱物学者で、「鉱物学の父」と呼ばれている。 アユ …

切稜四面体

菱形十二面体その12では立方体の辺をカットしたものを考えた。 このとき出てきた次の多面体は、切稜立方体と呼ばれる。 また、その13では正八面体の辺をカットして、切稜八面体が現れた。 そして、いずれも場 …

菱形十二面体 その13

これまでの記事 前回、立方体の辺をカットしていくことを考えた。 今回は、同じことを正八面体に対してやってみよう。 前回のMathematicaの式を少しいじるだけでそれが可能になる。 RegionPl …

四次元を「見る」方法 〜射影について〜

今までに菱形十二面体の記事をたくさん書いてきたが、菱形十二面体についてどうしても書きたいことがある。 それは、「菱形十二面体は4次元立方体の射影である」という事実である。 しかし、これについて書くため …

菱形十二面体 その12

これまでの記事 今回は、Mathematicaで領域をプロットする機能を使って菱形十二面体に関係する話をしよう。 Mathematicaには、不等号で表される領域をプロットするための関数が用意されてい …